Size-constrained Submodular Minimization through Minimum Norm Base

نویسندگان

  • Kiyohito Nagano
  • Yoshinobu Kawahara
  • Kazuyuki Aihara
چکیده

A number of combinatorial optimization problems in machine learning can be described as the problem of minimizing a submodular function. It is known that the unconstrained submodular minimization problem can be solved in strongly polynomial time. However, additional constraints make the problem intractable in many settings. In this paper, we discuss the submodular minimization under a size constraint, which is NP-hard, and generalizes the densest subgraph problem and the uniform graph partitioning problem. Because of NP-hardness, it is difficult to compute an optimal solution even for a prescribed size constraint. In our approach, we do not give approximation algorithms. Instead, the proposed algorithm computes optimal solutions for some of possible size constraints in polynomial time. Our algorithm utilizes the basic polyhedral theory associated with submodular functions. Additionally, we evaluate the performance of the proposed algorithm through computational experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Submodular Function Minimization Algorithm Based on the Minimum-Norm Base∗

We consider an application of the minimum-norm-point algorithm to submodular function minimization. Although combinatorial polynomial algorithms for submodular function minimization (SFM) have recently been obtained, there still remain (open) problems of reducing the complexity of the SFM algorithms and of constructing a practically fast SFM algorithms. We show some possible approach to the pro...

متن کامل

Provable Submodular Minimization via Fujishige-Wolfe’s Algorithm∗

Owing to several applications in large scale learning and vision problems, fast submodular function minimization (SFM) has become a critical problem. Theoretically, unconstrained SFM can be performed in polynomial time [10, 11]. However, these algorithms are typically not practical. In 1976, Wolfe [22] proposed an algorithm to find the minimum Euclidean norm point in a polytope, and in 1980, Fu...

متن کامل

Provable Submodular Minimization using Wolfe's Algorithm

Owing to several applications in large scale learning and vision problems, fast submodular function minimization (SFM) has become a critical problem. Theoretically, unconstrained SFM can be performed in polynomial time [10, 11]. However, these algorithms are typically not practical. In 1976, Wolfe [21] proposed an algorithm to find the minimum Euclidean norm point in a polytope, and in 1980, Fu...

متن کامل

A note on the Minimum Norm Point algorithm

We present a provably more efficient implementation of the Minimum Norm Point Algorithm conceived by Fujishige than the one presented in [FUJI06]. The algorithm solves the minimization problem for a class of functions known as submodular. Many important functions, such as minimum cut in the graph, have the so called submodular property [FUJI82]. It is known that the problem can also be efficien...

متن کامل

On fast approximate submodular minimization: Extended Version

We are motivated by an application to extract a representative subset of machine learning training data and by the poor empirical performance we observe of the popular minimum norm algorithm. In fact, for our application, minimum norm can have a running time of about O(n) (O(n) oracle calls). We therefore propose a fast approximate method to minimize arbitrary submodular functions. For a large ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011